
UCRL-JC-135828

Performance of the IBM General Parallel File System

Terry Jones, Alice Koniges, R. Kim Yates
Lawrence Livermore National Laboratory

rkyates@llnl.gov

Abstract
We measure the performance and scalability of IBM’s
General Parallel File System (GPFS) under a variety of
conditions. The measurements are based on benchmark
programs that allow us to vary block sizes, access pat-
terns, etc., and to measure aggregate throughput rates. We
use the data to give performance recommendations for
application development and as a guide to the improve-
ment of parallel file systems.

1. Introduction

Large-scale scientific computations such as those as-
sociated with ASCI1 stretch the limits of computational
power. Parallel computing is generally recognized as the
only viable solution to high performance computing prob-
lems [1,2]. I/O has become a bottleneck in application
performance as processor speed skyrockets, leaving storage
hardware and software struggling to keep up. Parallel file
systems must be developed that allow applications to
make optimum use of available processor parallelism.

To deal with these parallel I/O issues, IBM has devel-
oped the General Parallel File System (GPFS) [3,4].
GPFS allows parallel applications to have simultaneous
access to a single file or to a collection of files. Each node
on an SP has equal access to files using standard POSIX
calls. In addition, increased flexibility for parallel applica-
tions can be gotten by reading and writing GPFS files via
MPI-I/O libraries layered on top of the file system [5].

There are several reasons why parallel applications
need such a file system. Where performance is the major
bottleneck, the aggregate bandwidth of the file system is
increased by spreading reads and writes across multiple
disks, and balancing the load to maximize combined
throughput. For dealing with very large data sets, the abil-
ity to span multiple disks with a single file makes the

1 ASCI (the Accelerated Strategic Computing Initiative) is
a U.S. DOE Defense Programs project to create leading-
edge high-performance capabilities in scientific computa-
tion (see http://www.llnl.gov/asci/).

management of the file seamless to the application. The
alternative, writing to a separate file for each process, is
not only very inconvenient (the user must keep track of
the thousands of files that would be left after every run), it
can prevent or complicate reading back the data to a differ-
ent number or different set of processors, and usually re-
quires an extra post-processing step to coalesce the
separate files into a single file for, say, visualization.

1.1 I/O requirements and workload

Recently a computing rate of 2.14 Tflops was
achieved on a linear algebra benchmark on the 1464-node
RS/6000 SP machine (called “SKY”) at LLNL. This ma-
chine has a theoretical peak computational rate of about
3.9 Tflops and a total memory size of 2.6 Tbytes. If we
use a common rule of thumb that predicts applications
will store one byte of information per 500 peak flops,
this suggests that an I/O throughput of approximately 7.3
GB/sec is needed. (Note: throughout this paper, 1 MB is
10242 bytes, and 1 GB is 10243.) Another common rule
to estimate how well a system is balanced, based on past
experience, says that an application will store half of total
memory once per hour, and that this should take no more
than five minutes. For SKY this rule suggests an I/O
target rate of about 4.4 GB/sec. In the current installation
SKY is equipped with two GPFS file systems for each of
its three partitions, providing an aggregate throughput of
about 6.7 GB/sec to the six separate file systems. (Note:
It would have been possible to combine the two GPFS
file systems (with a total of 56 servers) on each of SKY’s
three partitions into a single file system on each partition,
but it was thought that two file systems per partition
would be more useful. It is not possible for a GPFS file
system to span the three partitions that form SKY.)

But peak and sustained performance rates alone are not
the only factors. Scientific applications are notoriously
complex and diverse in their file access patterns [6,7]. I/O
access patterns are generally divided into subgroups [8]:
1. Compulsory
2. Checkpoint/restart
3. Regular snapshots of the computation's progress.

4. Out-of-core read/writes for problems which do not fit
the memory.

5. Continuous output of data for visualization and other
post-processing.

In the applications with which we are most familiar,
writes will need to be performed more often than reads,
with categories 2 and 5 dominant.

Finally, we cannot neglect the question of reliability.
To achieve gigabyte-per-second performance there must be
hundreds or thousands of disks, with dozens of servers and
attendant connections. These must all be highly reliable.
More importantly, they must be fail-safe, so that the sys-
tem can continue to function when a component fails.
This requires sophisticated and well-tuned software that
can compensate for failures in a distributed system.

2. Structure and function of GPFS

The GPFS architecture was designed to achieve high
bandwidth for concurrent access to a single file (or, of
course, to separate files), especially for sequential access
patterns. The intended platform for this file system is
IBM’s line of massively parallel computers, the RS/6000
SP, and performance is achieved with commodity disk
technology. The RS/6000 SP line of machines are general
purpose, high end computers which scale to thousands of
processors [9]. Each node runs a Unix kernel and is
autonomous. A proprietary network technology permits
every node to communicate with a corresponding remote
node simultaneously. Access is uniform to all remote
nodes (there is no notion of a “neighbor” node which has
better bandwidth characteristics) [10].

Node-to-node communication is enhanced through the
use of the special network fabric present in IBM SP paral-
lel machines. Commonly referred to simply as “the
switch,” this interconnect provides unidirectional IP at 83
MB/sec for the model installed at LLNL [11].

There has been much research in parallel file systems
(e.g., [12,13,14,15,16,17,18,19]). However, as we need
production-quality file systems that can deliver gigabyte-
per-second throughput, the most relevant systems are In-
tel’s PFS [20] and SGI’s XFS [21]. The main difference
between GPFS and PFS is that the latter has a non-
standard interface and has not shown high performance on
concurrent access to a single file. XFS does use the stan-
dard POSIX interface and has high performance, but works
only for shared memory architectures.

2.1 GPFS architecture

GPFS is implemented as a number of separate soft-
ware subsystems or services. Each service may be distrib-
uted across multiple nodes within an SP system. Many of

the services necessary for GPFS are provided by a persis-
tent GPFS daemon called mmfsd. Among the more im-
portant services provided by mmfsd are (see Fig. 1): (1)
file system access for nodes which wish to mount GPFS;
(2) a metanode service which retains file ownership and
permissions information for a particular file; (3) a stripe
group manager service which manages and maintains in-
formation about the various disks that make up the file
system; (4) a token manager server which synchronizes
concurrent access to files and ensures consistency among
caches; (5) finally a configuration manager which ensures
that a stripe group manager and token manager server are
operational and that a quorum exists.

Figure 1. Overall GPFS architecture

Each of the nodes dedicated to running parallel applica-
tions has an mmfsd daemon present to mount the file
system and perform access. It is responsible for actually
performing the reads and writes performed on that node.

 The Virtual Shared Disk (VSD) layer of GPFS per-
mits a node to locally issue a write that physically occurs
on a disk attached to remote node. The VSD layer there-
fore consists of VSD clients on the application nodes and
VSD servers on the disk-attached I/O nodes.

GPFS is a “client-side cache” design. The cache is
kept in a dedicated and pinned area of each application
node’s memory called the pagepool and is typically around
50 Mbytes per node. This cache is managed with both
read-ahead (prefetch) techniques and write-behind tech-
niques. The read-ahead algorithms are able to discover
sequential access and constant-stride access.

GPFS is multi-threaded. As soon as an application’s
write buffer has been copied into the pagepool, the write
is completed from an application thread’s point of view.
GPFS schedules a worker thread to see the write through
to completion by issuing calls to the VSD layer for
communication to the I/O node. The amount of
concurrency available for write-behind and read-ahead ac-
tivities is determined by the system administrator when
the file system is installed.

Switch

Compute
Nodes

I/O
Nodes

mmfsd app

vsd

Stripe Grp Mgr
Token Mgr Srvr

mmfsd

Metanode

mmfsd

Consistency is maintained by the token manager
server of the mmfsd daemon. (There is one such copy of
the mmfsd running within the entire SP parallel com-
puter.) The item being accessed (for example, a file) is
termed a lock object. The per-object lock information is
termed a token. On every write access, the mmfsd deter-
mines if the application holds a lock that permits the right
to modify the file. If this is the first write for this node
and for this file, a write token must be acquired. The
mmfsd negotiates with the node that holds the token in
order to get the requested token. It first contacts the token
manager server for a list of nodes that have the token, then
it negotiates with the tokens in that list to acquire the
token. This technique is employed for scalability reasons:
distributing the task to the mmfsd reduces serialization at
the token manager server. Moreover, in anticipation of
sequential access the token manager may extend the range
of bytes locked beyond what was actually requested.

GPFS enforces strict POSIX atomicity semantics.
That is, if two separate nodes write to the same file, and if
the writes are overlapping, the overlapped region must be
either entirely from node A or entirely from node B.

2.2 GPFS data paths

It is instructive to study the data flow of reads and
writes when analyzing any file system. This is particu-
larly true of file systems with distributed components.

When an application requests read or write access to a
file, GPFS first determines if the file already exists via the
metanode (which is running on a possibly remote copy of
the mmfsd). Any updates to the inode information for the
file are negotiated with the metanode. The original node to
open the file will become the initial metanode for that file
and will have pertinent metadata cached including the
original access. The metanode manages all directory block
updates. The metanode may change locations in instances
where the node fails. The following assumes the applica-
tion has successfully opened the file for writing. Figure 2
shows the major steps involved with a write:
• The application makes a call with a pointer to a

buffer in its space. The mmfsd on the application
node acquires a write access token for the byte range
involved in the write.

• The mmfsd acquires some of the file’s metadata to
reflect where the data is to be written, some unused
disk blocks for the write, and some buffer space from
the pagepool. If no buffer is available one is cleared
by writing the oldest buffer to disk.

• The data is moved from the application’s data buffer
to the GPFS pagepool buffer. A thread is scheduled to
continue the write. As far as the application is con-

cerned, the write has completed. This technique is
commonly called write-behind caching.

• The GPFS worker thread calls the VSD layer to per-
form the write. This in turn is passed on to the IP
layer where the write is broken up into IP message
packets (mbufs, typically 60 Kbytes), and the data is
copied to the switch communications send pool
(spool) buffers. At this point, the data has been cop-
ied twice, once into a GPFS pagepool buffer and then
to the switch send pool buffer. Both copies are han-
dled by the application’s CPU.

• The data is communicated over the switch. Once the
data is received at the VSD server receive pool (rpool)
buffer, the switch driver forwards each packet to the
VSD through the IP layer of AIX.

• Once all packets of a request have been received at the
VSD server, a buddy buffer is allocated. The buffer
reassembles the large chunk of data from the packets.
If a buffer is not immediately available, the request is
queued and the data remain in the switch receive pool.

• The VSD server releases all the receive pool mbufs
and issues a write via the disk device driver. The de-
vice driver may wait a short time (configurable) be-
fore issuing the write so that it might be combined
with immediately occurring sequential writes in an at-
tempt to write an entire storage block (size deter-
mined by the system administrator). On RAID sys-
tems this should be the RAID stripe size.

• The VSD server releases the buddy buffer and sends
notification of completion to the VSD client.

• The VSD client drives the completion processing.
The pagepool buffer is now available for use for an-
other application call.

Reads are similar, with data flowing in the opposite
direction. GPFS attempts to guess which data is desired
next and prefetch it into the pagepool on reads. For this
reason, substantial performance gains are available for
sequential read access patterns.

2.3 Unusual features and mechanisms of GPFS

As mentioned earlier, the degree of scalability is
probably the most unique feature of GPFS. This design
permits a file to be striped across a system-administrator-
defined number of server nodes. Not only does this pro-
vide higher aggregate read and write performance, it also
permits larger files and file systems. Furthermore, each
node may stripe its portion across many locally attached
disks thus providing additional parallelism. GPFS’s file
striping mechanisms ensure metadata and data are managed
in a distributed manner to avoid hot spots. Traditional

Figure 2. Control and data flow in writing to disk

local or distributed file systems are far more localized in
terms of data placement that greatly increases the risks of
loading. Together these features permit file systems that
are terabytes in capacity and provide over a gigabyte per
second bandwidth.

The token management scheme employed by GPFS
permits byte-range locking. That is, one task may be
granted to write or read access to a portion of a file, and
other tasks may be granted read or write access to other
portions of the same file. This permits writes and reads to
occur concurrently without serialization because of consis-
tency. Unfortunately, traditional UNIX file systems, and
most other file systems, do not support parallel access
well: the mechanisms they provide for file consistency
(file locking) are performed at the entire file level. This is
particularly ill-suited for parallel computing where multi-
ple nodes may be writing to different portions of the same
file concurrently. Furthermore, the GPFS token manage-
ment eliminates the possibility of “stale mount points”
which commonly occur in NFS. These features are a key
advantage to GPFS.

GPFS incorporates extensive reliability and availabil-
ity measures. GPFS uses the High Availability subsys-
tem provided with every RS/6000 SP for improved fault

tolerance. This system, which uses a neighbor ping sys-
tem to determine the health of every node, is used to
check the health of distributed components [22]. The to-
ken manager server is usually co-located with the stripe
group manager. In the event that the mmfsd providing the
stripe group manager service or the token manager service
becomes unavailable, the configuration manager will se-
lect a pre-determined replacement and a randomly chosen
“next in line” node should the new candidate fail. A quo-
rum is required for successful file system mounts. This
prevents the file system from getting into an inconsistent
state in the event of a partition in the network fabric. Fi-
nally, extensive logging is used to commit file system
metadata changes in a safe manner. Availability is en-
hanced through the ability to replicate files, use of RAID
arrays, or AIX mirroring.

2.4 Potential problems and bottlenecks

GPFS version 1.2 has some functionality limitations.
It does not support memory mapped files, a common non-
POSIX way to establish a mapping between a process’s
address space and a virtual memory object. In addition,
since the atime, mtime, and ctime information is main-

Legend User
Space

Kernel
Space buffer control flow

data flow

mmfsd
kernel ext.

IP
Layer

App
mmfsd

worker
threads

rpool
16 MB

pagepool
~50 MB

Log Vol
Mgr

disk

rpool
16 MB

spool
16 MB

buddybuff
33 count

CPU
Copy

CPU
Copy CPU

Copy

DMA

Switch
Comm

disk
driver

VSD
Layer

IP
Layer

VSD
Layer

spool
16 MB

tained in a distributed manner (for performance reasons),
some time is required before the most up to date informa-
tion on an actively changing file is available to all nodes.
For our applications, these are not hindrances.

GPFS 1.2 has a performance limitation that can arise
when clients send data to the servers faster than it can be
drained to disk. For any given GPFS file system, there is
an upper bound on how fast the rotating media can actu-
ally commit writes or perform reads. With enough appli-
cation nodes sending information to these disks via the
high performance SP interconnect, applications may be
able to exceed the ability of the aggregate disks to drain
the information. When this happens, current versions of
GPFS use an exponential backoff protocol: An applica-
tion node is delayed a time y , and then it retries. If that
write fails, it waits 2y, then 4y , 8y and so on. We have
observed that under extreme conditions this backoff proto-
col can actually reduce the throughput below what the file
system is capable of maintaining.

The data path presented in section 2.2 also describes
the potential bottlenecks. For instance, if an application is
doing a write and the pagepool is full, the write must
block until some information from the pagepool can be
committed. Adjusting the size of the various buffers in the
data path to permit efficient performance will depend on
the type and number of VSD servers in a given GPFS file
system, the type and number of disk drives and the con-
nections to these drives, and of course on the application
access patterns. In general, it is best to have a balanced
configuration in which in all VSD servers have similar
numbers of disk drives and similar types of disk drives.
The application should make large writes and reads where
possible to amortize the system call cost: one write call
with a one megabyte buffer is much more efficient than
one million calls with a one byte buffer simply because of
the CPU limitations on the application node. The GPFS
block size should be compatible with the RAID array
when RAIDs are employed.

Another potential bottleneck arises from the fact that
data is copied twice within the client: once between the
application’s buffer and the pagepool, and again between
the pagepool and IP buffer pool. For writes, this has the
advantage that the application can continue as soon as the
data is copied into the pagepool. But copying the data
twice can use enough memory bandwidth to limit the use-
fulness of having more than one processor per node write
to a file concurrently. However, for all but very small
jobs (i.e., those with few processes) this is of little conse-
quence, since the throughput will be limited by the num-
ber of servers rather than by the number of clients.

As can be seen from the design of GPFS, and as will
become clear in the experimental data, GPFS is biased
toward sequential access patterns. This can be a disadvan-

tage for applications in which processes access the file in
small pieces that are interleaved with data from other
processes. Client-side caching contributes to this effect, as
does GPFS’s handling of the tokens that ensure atomicity
of writes. However, this nonsequential small-block effect
should be mitigated somewhat by using a higher-level I/O
library to redistribute data into larger blocks before they
are sent to GPFS.

3. Experiments

The experiments shown here have been chosen be-
cause they show the effects of varying the I/O characteris-
tics of application programs. We measured how aggregate
throughput varied depending on the number and configura-
tion of client processes, the size of individual transfers,
and access patterns. We also show how GPFS perform-
ance scales with system size. In addition, we have also
run many experiments to test the effects of changes in
GPFS tuning parameters that are fixed when the file sys-
tem is built, but we do not show these here; some can be
found in [3].

3.1 Methodology

We are primarily interested in measuring the aggregate
throughput of parallel tasks creating and writing a single
large file, and of reading an existing file. To accomplish
this we have created a benchmark program
(ileave_or_random, written in C using the MPI message
passing library) capable of varying a large number of ap-
plication I/O characteristics. To measure the throughput
of writes, the benchmark performs a barrier, then each
task records a “wall clock” starting time, process 0 creates
the file and all other processes wait at a barrier before
opening it (but where noted, some experiments access a
separate file for each process), then all processes write
their data according to the chosen application characteris-
tics (in the tests shown here, always independently of each
other, filling the file without gaps and without overlap);
finally, all processes close the file and record their ending
time. The throughput is calculated as the total number of
bytes written in the total elapsed wall clock time (the
latest end time minus the earliest start time). Reads are
measured similarly, except that all processes can open the
file without having to wait for any other process. This
approach is very conservative, but its advantages are that
it includes the overhead of the opening and closing and
any required seeks, etc., and measures true aggregate
throughput rather than, for example, an average of per-
process throughput rates. Because most of our experi-
ments were run on production systems in full use, we
could not be sure when other jobs were competing for the

file system being tested. To address this problem, we ran
each test several times and report the best time. Hence the
results indicate the peak performance the file system is
capable of delivering rather than what a user would see in
the presence of other jobs competing for the same re-
sources.

Like all file systems, the performance of GPFS de-
pends heavily on the access pattern of the application. The
two access patterns we report on are illustrated in Fig. 3.

Figure 3. Segmented vs. strided access

What we call the segmented pattern is processor-wise
sequential, i.e., the file is divided evenly among the client
processes, with each process writing a sequence of equal-
sized blocks to (or reading from) a contiguous portion of
the file. Conversely, in the strided access pattern the
blocks are interleaved, with process 0 accessing blocks 0,
p, 2p, etc., process 1 accessing blocks 1, p+1, 2p+1, etc.
The block size is the number of bytes moved by each in-
dividual write or read operation, and is not necessarily the
same as the stripe width of the file system (which was
256 kB for the systems tested).

As one would expect from its token management and
client-side caching as described in Sec. 2, and as demon-
strated by the data shown below, GPFS exhibits much
better performance for the segmented access pattern. All
experiments shown are for the segmented access pattern,
except where otherwise noted.

3.2 Relevance to real applications

The I/O performance seen in real applications will de-
pend on complex interactions between the system and the
application’s runtime behavior. Competition with other
applications for I/O resources, wild access patterns, and
some randomness in the file system can cause performance
to be lowered. Another relevant effect is that GPFS will
do better when it is “warmed up,” i.e., when its current
access patterns resemble most recent patterns. On the
other hand, because our benchmarks do not overlap I/O
with computation, and because they force all I/O to occur
simultaneously, real applications may actually do better.

3.3 Experimental results

For a given GPFS file system, the most important
factors affecting performance (aside from the access pat-
tern) are the number of parallel processes participating in
the transfers, and the size of the individual transfers. Fig-
ure 4 shows that performance is highest when the ratio of
client processes to VSD server nodes is near 4:1. (Though
the nodes running our experiments have four processors
per node, we ran only one client task per node, except
where otherwise noted.) In Fig. 4, we wrote/read a 102
GB file using 256 kB blocks in the segmented pattern.

0

200

400

600

800

1000

1200

1400

1600

50 100 150 200 250 300

M
B

/s
ec

number of clients

read
overwrite
write new

Figure 4. Varying clients vs 38 servers

When the client:server ratio is too low the servers are
starved for data; when it is too high the receiving buffers
fill up faster than they can be drained, eventually causing
packets to be dropped and retries initiated, reducing per-
formance. This points to a need for improved control of
the data flow between client and server. In the middle of
the curves the throughput is high: around 1500 MB/sec
for writes and 1600 for reads; this agrees with our expecta-
tion of about 40 MB/sec times the number of servers.
Note also that file overwrites are not appreciably faster
than new file creation.

The next four Figures (5a,b and 6a,b) show the effects
of different transfer block sizes as well as varying the
number of clients, this time for a smaller, 20-server
GPFS file system. Figure 5a shows the performance of
reading a single file, while Fig. 5b shows the result of
reading the same amount of data split into separate files,
one file for each client process. Figures 6a and 6b show
the corresponding results for writing. First of all, note
that the size of the individual transfers (“block size” in the
plots) doesn’t matter very much, except for very small
transfers (< 8 kB). (However, as will be seen later, trans-
fer size has a very strong effect in non-segmented access
patterns.) Secondly, note that there is not a great deal of

node 0 node 1 node 2 node 3

segmented file layout strided file layout

0

200

400

600

800

1000

1 4 16 64 256 1024

M
B

/s
ec

block size (kB)

4 clients
8 clients

16 clients

32 clients
64 clients

128 clients

256 clients

Figure 5a. Reading a single file (20 srvs)

0

200

400

600

800

1000

1 4 16 64 256 1024

M
B

/s
ec

block size (kB)

4 clients
8 clients

16 clients

32 clients
64 clients

128 clients

256 clients

Figure 5b. Reading separate files (20 srvs)

difference in the aggregate performance between accessing
a single file or separate files, until one reaches 128 kB
blocks with 256 clients, where single-file access drops
dramatically.

In the previous experiments only a single processor on
each 4-processor client node participated in the file ac-
cesses. The following four graphs show what happens
when more of the processors are used on each of 4, then
32 nodes (Figs. 7a-7b and 8a-8b, respectively). These data
show that there is little to be gained from using more than
one processor per node to access GPFS, with the possible
exception of reads in small jobs. If the GPFS code in the-
client were made to run faster (e.g., perhaps by eliminat-
ing the intermediate copying of data between the
application’s buffer and GPFS’s pagepool), one could
expect that performing I/O in 2,3, or 4 client processors
per node would show increased performance. However,
there would be little point in doing so since most jobs
will use enough client nodes to saturate the capacity of the
servers, even using a single I/O process per node.

0

100

200

300

400

500

600

700

1 4 16 64 256 1024

M
B

/s
ec

block size (kB)

4 clients
8 clients

16 clients

32 clients
64 clients

128 clients

256 clients

Figure 6a. Writing a single file (20 srvs)

0

100

200

300

400

500

600

700

800

1 4 16 64 256 1024

M
B

/s
ec

block size (kB)

4 clients
8 clients

16 clients

32 clients
64 clients

128 clients

256 clients

Figure 6b. Writing separate files (20 srvs)

The performance of GPFS for different transfer sizes
in the round-robin access pattern using 80 clients and 20
servers is shown in Fig. 9. Note first that performance is
extremely poor for anything smaller than the stripe width
of 256 kB. This is as one would expect, given the client-
side caching in GPFS. Application programs should defi-
nitely avoid this combination of nonsequential access
pattern and small block size, or use a higher-level library
such as MPI-IO, which can redistribute the data via collec-
tive parallel I/O functions, passing the resultant larger
blocks to GPFS in place of the many separate smaller
blocks. At larger block sizes, note that the read perform-
ance is about 1/3 of the peak speed achievable with the
segmented access pattern (e.g., compare to the 20-server
point in Fig. 10). Writes fare relatively better at interme-
diate block sizes, achieving 366 to 553 MB/sec (compared
to around 700 MB/sec peak for the segmented pattern),
before dropping precipitously with 1 MB blocks.

Figure 10 shows how the peak throughput rates of
GPFS scale along with the number of servers. Note that
writes scale almost perfectly with the 40 MB/sec “ideal”,

0

50

100

150

200

250

1 4 16 64 256 1024

M
B

/s
ec

block size (kB)

4x1
4x2
4x3
4x4

Figure 7a. 4 nodes read, 1-4 tasks / node

0

200

400

600

800

1000

1 4 16 64 256 1024

M
B

/s
ec

block size (kB)

32x1
32x2
32x3
32x4

Figure 7b. 32 nodes read, 1-4 tasks / node

demonstrating sustained throughputs over 2 GB/sec at the
high end; reads are even better. Of course, these peak rates
were obtained with segmented access patterns, and with
well-chosen block sizes and client:server ratios. (Note: the
data for 58 servers were obtained from IBM [23].) Theo-
retically, if the proper balance is maintained between
computational nodes and I/O server nodes, GPFS should
scale up to over 4 GB/sec for the maximum 512-node
system, but this has not been demonstrated.

5. Conclusion

We find that GPFS is capable of excellent aggregate
throughput for per-process-sequential (i.e., segmented)
access patterns, scaling well with the number of servers
up to more than 2 GB/sec. Moreover, the familiar standard
POSIX interface is adequate to achieve this performance.

To get the best performance from GPFS v1.2, pro-
grams should use the segmented access pattern, and should
keep the client:server ratio below 6. We expect that im-
provements to GPFS’s control of data flow between cli-
ents and servers would eliminate the degradation of

0

20

40

60

80

100

120

140

1 4 16 64 256 1024

M
B

/s
ec

block size (kB)

4x1
4x2
4x3
4x4

Figure 8a. 4 nodes write, 1-4 tasks / node

0

100

200

300

400

500

600

700

1 4 16 64 256 1024

M
B

/s
ec

block size (kB)

32x1
32x2
32x3
32x4

Figure 8b. 32 nodes write, 1-4 tasks / node

performance with higher client:server ratios. At least in
its current implementation, GPFS should not be used for
nonsequential access patterns when the transfer size is less
than the GPFS stripe width (256 kB). In that case, higher-
level I/O libraries such as MPI-IO running on top of
GPFS should give better performance. Alternatively, one
might choose to write a separate file for each process.

For file system designers, we consider GPFS to be a
good example of a scalable and trustworthy high-
performance parallel file system with a standard user inter-
face. However, we would prefer to see nonsequential ac-
cess patterns perform better (though not at the expense of
lower performance for sequential patterns).

One important improvement we would like to see is
in the area of flow control; this would not increase peak
throughput rates, but would maintain them at high cli-
ent:server ratios. Another possible improvement would be
to remove or reduce the impact of token management used
in enforcing POSIX’s atomicity semantics by providing
the user the option of turning it off; i.e., the throughput
might be improved if the application program could assert
that no overlapping writes will occur.

0

100

200

300

400

500

600

0 200 400 600 800 1000

M
B

/s
ec

block size (kB)

read
write

Figure 9. Round-robin pattern

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

M
B

/s
ec

number of servers

read
write

40MB/s per server

Figure 10. Scaling with number of servers

References

[1] Alice Koniges, Parallel Computer Architecture, in Indus-
trial Strength Parallel Computing, Morgan Kaufmann, 2000.

[2] D. Culler and J. P. Singh, Parallel Computer Architecture:
A Harware/Software Approach. Morgan Kaufmann, 1998.

[3] M. Barrios, T. Jones, S. Kinnane, M. Landzettel, S. Al-
Safran, J. Stevens, C. Stone, C. Thomas, U. Troppens, Sizing
and Tuning GPFS. IBM Corp, SG24-5610-00, 1999, at
http://www.redbooks.ibm.com/.

[4] M. Barrios et al., GPFS: A Parallel File System. IBM Cor.,
SG24-5165-00, 1998, http://www.redbooks.ibm.com/.

[5] W. Gropp and S. Huss-Lederman, MPI the Complete Refer-
ence: The MPI-2 Extensions. MIT Press, 1998.

[6] E. Smirni, R. Aydt, A. Chien, D. Reed, "I/O Requirements
of Scientific Applications: An Evolutionary View," HPDC 96

[7] N Nieuwejaar, D Kotz, A Purakayastha, C Ellis, M Best.
“File-Access Characteristics of Parallel Scientific Work

loads”. IEEE Tran. Par. and Dist. Sys., 7(10), Oct 1996.

[8] Yong Eun Cho, Efficient Resource Utilization for Parallel
I/O in Cluster Environments, PhD Thesis: U. Illinois, 1999,
and references therein.

[9] White, S. W. and Dhawan,S., "POWER2:Next generation
of the RISC System/6000 family," IBM J. Res. Develop., 38,
No. 5, 493-502, Sept 1994.

[10] C. B. Stunkel, et al, The SP2 High-Performance Switch,
IBM Systems Journal, 34, No. 2, 1995

[11] Frank Johnston and Bernard King-Smith, “SP Switch
Performance”, IBM Corp., Aug 1999. http://www.rs6000
.ibm.com/resource/technology/spswperf.html

[12] S. Baylor and C. Wu. Parallel I/O Workload Characteris-
tics Using Vesta. In R. Jain et al, eds, Input/Output in Parallel
and Distributed Computer Systems. Kluwer Academic, 1996.

[13] K. Seamons and M. Winslett, “Multidimensional array
I/O in Panda 1.0.” J. of Supercomputing, 10, 1-22 (1996).

[14] E. Miller and R. Katz, “RAMA: An easy-to-use, high-
performance parallel file system”. Parallel Comp., 23, 1997.

[15] N. Nieuwejaar and D. Kotz, “The Galley parallel file sys-
tem.” Parallel Comp., 23, 447-476 (1997).

[16] G. Gibson et al., “The Scotch Parallel Storage Systems.”
Proc. IEEE CompCon, 1995.

[17] S. Moyer and V. Sunderam, “PIOUS: A scalable parallel
I/O system for distributed computing environments.” Proc.
Scalable High-Performance Comp. Conf., pp. 71-78, 1994.

[18] J. Huber, C. Elford, D. Reed, A. Chien, and D. Blumen-
thal, “PPFS: A high performance portable parallel file sys-
tem.” ACM Int. Conf. Supercomputing, 1995.

[19] R. Thakur, A. Choudhary, R. Bordawekar, S. More, S.
Kuditipudi, “PASSION: Optimized I/O for parallel applica-
tions.” IEEE Computer, 29(6):70-78, June 96.

[20] S. Garg, TFLOPS PFS: Architecture and design of a
highly efficient parallel file system.” Proc. ACM/IEEE SC98.

[21] M. Holton and R. Das, “XFS:A next generation jour-
nalled 64-bit filesystem with guaranteed rate I/O.” SGI
Corp.http://www.sgi.com/Technology/xfs-whitepaper.html.

[22] IBM, “RS/6000 HACMP for AIX White Paper.” http://
www.rs6000.ibm.com/resource/technology/ha420v.html.

[23] Jim Wyllie,“SPsort: How to sort a terabyte quickly.”
http://www.almaden.ibm.com/cs/gpfs-spsort.html.

